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CHAPTER 2: Surface Chemistry 
  

 INTRODUCTION 

Surface Chemistry is closely related to interface and colloidal science. Surface chemistry 
is important in many criticalchemical processes, such as enzymatic reactions at biological interfaces 
found in cell walls and membranes, in electronics at the surfaces and interfaces of microchips 
used in computers, and the heterogeneous catalysts found in the catalytic converter used for 
cleaning emissions in automobile exhausts. 

 DEFINITION 
Surface science is the study of chemical phenomena that occur at the interface 

of two phases (solid–liquid interfaces, solid–gas interfaces, solid–vacuum interfaces, 
and liquid-gas interfaces). (or) 

It is defined as the study of chemical reactions at interfaces. 
2.1 

SURFACE CHEMISTRY 
AND CATALYSIS 

Introduction - Terminologies in surface chemistry - Difference between adsorption 
and absorption - Types of adsorption - Adsorption isotherm- Freundlich Adsorption 
Isotherms- Langmuir Adsorption Isotherm - Contact Theory (or) Mechanism of 
Heterogeneous Catalysis - Kinetics of Surface Reaction - Kinetics of Bimolecular 
Reaction (Langmuir-Hinshelwood) - Types of Adsorption Isotherm - Application 
of Adsorption- Terms - Mechanism of Catalytic Reaction- Criteria (or) Characteristics 
for Catalyst Types of Catalysis - Homogeneous Catalysis - Heterogeneous Catalysis- 
Catalytic Poisoning and Promoters Application of Catalysis- Biological Catalyst— 
—Enzymes - Kinetics of Enzyme Catalysed Reaction Or Michaelis and Menten 
equation - Factors Affecting Enzyme Activity 
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Adsorption Desorption Absorption 
 

  
Figure 2.2 : Occlusion Process 

 
z Positive adsorption: When the concentration of solute adsorbed on the solid 

adsorbent surface is greater than in the bulk it is called positive adsorption. 

(Eg.) Concentrated solution of KCl is shaken with blood charcoal, it shows positive 

adsorption 

z Negative adsorption: When the solvent from the solution may be absorbed by the 

adsorbent so that the concentration of the solute decreases and the concentration of 

solution increases than the initial concentration and it is called negative adsorption. 

(Eg.) Dilute solution of KCl is shaken with blood charcoal it shows negative adsorption. 

Enthalpy or heat of adsorption 

Amount of heat evolved when 1 mole of an adsorbate gets adsorbed on the surface of an 
adsorbent is called Molar Heat or Molar Enthalpy of Adsorption. 

 
 DIFFERENCE BETWEEN ADSORPTION AND ABSORPTION 

 

 
Figure 2.3 : Illustration of Absorption and Adsorption 

Adsorbant

Chemisorption 
Physisorption 

Absorption Adsorption
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2.2 FACTORS AFFECTING THE EXTENT OF ADSORPTION 

(i) Nature of Adsorbent 

The adsorption depends on the type of adsorbents used. When the adsorbent is highly 
porous the rate of adsorption increases. Activated carbon, metal oxides like aluminum oxide, 
silica gel and clay are commonly used adsorbents. The rate of adsorption can be increased by 
activation process. It helps in enhancing the pores in the adsorbent Eg. charcoal adsorbs 0.011 
gms of CCl4 at 24°C and activated charcoal adsorbs 1.48 gm of at 24°C. 

Activation of adsorbent 

During activation, the adsorbent is heated in steam to about 1500°C. Heating drives out 
all impurities and leads to a lager free surface for adsorption. It can be done in 3 given ways 

z By making the surface of adsorbent rough. 
 

z By heating the adsorbent in vacuum so that the water vapour present in pores leave 
those pores. 

z By increasing the surface area of adsorbent 
 

(ii) Surface area of adsorbent 

Increase in surface area of the adsorbent increases the adsorption of gases and the 
extent of adsorption depends on two factors 

z Greater the surface area greater the adsorption-Increase in surface area increases the 
number of adsorbing sites. 

z Larger the porosity greater the adsorption-Finely divided and highly porous materials 
acts as good adsorbents. 

Eg. Charcoal and silica gel (excellent adsorbents). 
 

(iii) Nature of Gases 

The amount of gas adsorbed by a solid depends on the nature of the gas. Easily liquefiable 
gases like HI, NH3, CI2, SO2 etc., are adsorbed more easily then the permanent gases like H2, 
N2, and O2 etc. Physical adsorption is non-specific in nature, so any gas will be adsorbed on the 
surface under any given conditions of temperature and pressure. Chemisorption is specific in 
nature so only those gases which forms chemical bonds will be adsorbed. 
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The nature of gas depends on two factors: 

z Critical Temperature (maximum temperature above which the gas cannot be 

liquefied). Liquefactions of gases depend on critical temperature. When the critical 

temperature is more the gases will be liquefied and more adsorption occurs. 

z Van der Waal’s forces: Easily liquefiable gases possess greater Vander Waal’s forces 

than permanent gases, so they are adsorbed more readily. 

(iv) Exothermic Nature 

Heat of adsorption is defined as the energy liberated when 1 g mol of a gas is adsorbed 
on a solid surface. Increase in temperature increases the kinetic energy of the gas molecules and 
it results in more number of collisions of gas molecules over the adsorbent surface. 

(v) Pressure 

When pressure is increased then the rate of adsorption increases initially. The extent of 
adsorption is expressed as x/m where ‘x’ is amount of adsorbate; ‘m’ is mass of adsorbent when 
the dynamic equilibrium is established between free gas and the adsorbed gas. But after some 
time it reaches appoint where no more adsorption occurs and at this point adsorption is 
independent of pressure. 

 
 

Figure 2.7 : Rate of adsorption 
 

3. ADSORPTION OF SOLUTE FROM SOLUTIONS 

The process of adsorption of solutes on solid surface can take place from solutions. For 
example the activated animal charcoal adsorbs colouring matter present in sugar solution and 
clarifies the sugar solution. It also has the capacity to adsorb acetic acid and oxalic acid from 
water thereby reducing the concentration of acids in water. 

There are two (or more) components present in a solution namelysolute and solvent. The 
solute may be present in the molecular or ionic form. The extent of adsorption from solution 

Low Pressure High
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depends upon the concentration of the solute in the solution, and can be expressed by  
the Freundlich Isotherm. 

 
 
 
 

(or) 

 
x = k ⋅c(1⋅n) 
m 

 

log x 
= log k + 1 log C 

m n 

where, x- is the mass of the solute adsorbed, 

m -is the mass of the solid adsorbent, 

c -is the concentration of the solute in the solution & 

n -is a constant having value greater than one, 
 

k -is the proportionality constant. 

The value of k depends upon the nature of solid, its particle size, temperature, and the 
nature of solute and solvent etc. It the graph is plot between x/m against c which gives a straight 
line which is similar to Freundlich adsorption isotherm. 

 
 FACTORS AFFECTING ADSORPTION OF SOLUTES FROM 

SOLUTION 

 Nature of adsorbent 

Adsorption ofsolute from solution is highly specific. Adsorption depends mainly on nature 
of adsorbent. 

 Temperature 

Adsorption from solution decreases with rise in temperature. 

 Concentration of solute 

Adsorption from solution decrease with decrease in concentration of solution.eg charcoal 
adsorbs water from dilute KCl solution whereas charcoal adsorbs KCl from concentrated KCl 
solution. 

4. ADSORPTION ISOTHERM 

The process of adsorption is usuallystudied through graphs know as adsorption isotherm. 
It is the graph between the amounts of adsorbate (x) adsorbed on the surface of adsorbent (m) 
and pressure (P) at constant temperature. 
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n

n

At low pressure, extent of adsorption is directly proportional to pressure: 
 

x 
∝ p1 

m 

At high pressure, extent of adsorption is independent of pressure: 
 

x 
∝ p0 

m 

At intermediate value of pressure, adsorption is directly proportional to pressure raised 

to power 1 
⋅ n value is greater than 1. 

n 
 

x ∝ p(1/ n) 
m 

To remove proportionality a proportionality constant ‘k’ is used which is known as 
adsorption constant and we get 

 

⎛ 1 ⎞ 
⎜   ⎟ 

= k ⋅ p⎝  ⎠ 
m 

 

The above equation is known as Freundlich Adsorption equation. 
 

Plotting of Freundlich Adsorption Isotherm 
 

⎛ 1 ⎞ 
⎜   ⎟ 

= k ⋅ p⎝  ⎠ 
m 

 

Taking log both sides of equation, we get, 
 

log x 
= log k + 1 log P 

m n 
 

The equation is comparable with equation of straight line, y = m x + c where, m represents 
slope of the line and c represents intercept on y axis. Plotting a graph between log (x/m) and 
log p, we will get a straight line with value of slope equal to 1/n and log k as y-axis intercept. 

x

x
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log 
 
 
 
 
 
 

Figure 2.9 : log (x/m) vs. log p graph 

Limitation of Freundlich Adsorption Isotherm 

1. Freundlich equation is purely empirical and has no theoretical basis. 

2. The equation is valid only upto a certain pressure and invalid at higher pressure. 

3. The constants k and n are not temperature independent, they vary with temperature. 

4. Frendilich’s adsorption isotherm fails when the concentration of the adsorbate is very high. 
 

 LANGMUIR ADSORPTION ISOTHERM 

In 1916, Irving Langmuir proposed another adsorption Isotherm which explained the 
variation of adsorption with pressure 

 
 
 
 
 
 
 

layer 
 
 

Figure 2.10 : Equilibrium between tree molecule and adsorbed molecules 
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Assumptions of Langmuir Isotherm 

Langmuir proposed his theory by making following assumptions. 

(i) Surface is energeticallyuniform. Fixed number ofvacant or adsorption sites are available 
on the surface of the solid. 

(ii) All the vacant sites are of equal size and shape on the surface of adsorbent. 

Each site can hold maximum of one gaseous molecule and a constant amount of heat 
energy is released. 

(iii) Heat of adsorption is constant throughout the surface and it ranges from 0 to 1. 

(iv) Dynamic equilibrium exists between adsorbed gaseous molecules and the free gaseous 
molecules. 

(v) Adsorption is monolayer or unilayer. 

Derivation 

Langmuir Equation depicts the relationship between the extent of adsorption and pressure. 
Langmuir proposed that dynamic equilibrium exists between adsorbed gaseous molecules and 
the free gaseous molecules. Using the equilibrium equation, equilibrium constant can be calculated. 

A(g)+B(s) 
 
Adsorption 

� AB 
Desorption 

where A(g ) − is unadsorbed gaseous molecule 

B(s) − is unoccupied metal surface and 

AB − is adsorbed gaseous molecule 

According to Kinetic theory, 

Rate of forward reaction = Ka [A] [B] 

Rate of backward reaction = Kd [AB] 

At equilibrium, Rate of forward reaction is equal to Rate of backward reaction 

Ka [A] [B] = Kd [AB] 

A new parameter ‘θ’ is introduced. 
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Let θ be the number of sites of the surface which are covered with gaseous molecule and 
(1–è) be the fraction of surface unoccupied by gaseous molecule. Rate of forward direction 
depends upon two factors, number of sites available on the surface of adsorbent, (1 – θ) and 
pressure, P. 

Rate of forward reaction ∝ P (1 − θ) 

Rate of adsorption ∝ P (1 − θ) or 

Rate of adsorption = Ka P (1 − θ) 

Rate of backward reaction or rate of desorption depends upon number of sites occupied 
by the gaseous molecules on the surface of adsorbent. 

Rate of desorption ∝ θ (or) 

Rate of desorption = Kd θ 

At equilibrium, rate of adsorption is equal to rate of desorption. 

Ka P (1 − θ) = Kd θ 

The above equation can be written in terms θ. 

Ka P − Ka Pθ = Kd θ 

Ka P = Ka Pθ + Kd θ 

Ka P = ( Kd + Ka P)θ 

θ = Ka P 
(Kd + Ka P) 

 

Divide numerator and denominator on RHS by Kd , we get 

Ka P 

θ = 
 
 

But  K = 
Ka 

Kd 

Kd 

Kd + Ka P 
Kd Kd 



2.14 Chemistry 
 

KP

Substituting in the above equation we get 
 

θ = 
1 + KP 

This is known as Langmuir Adsorption Equation. 

Alternate form of Langmuir Adsorption Equation 

Langmuir adsorption equation can be written in an alternate form in terms of volume of 
gas adsorbed. Let V be volume of gas adsorbed under given sets of conditions of temperature 
and pressure and Vmono be the adsorbed volume of gas at high pressure conditions so as to cover 
the surface with a unilayer of gaseous molecule. 

 

θ =  V 
Vmono 

Substituting the value of θ in Langmuir equation 
 

V 
Vmono 

KP 
 

  

1 + kP 
 
 

(or) Vmono 
=1+ 1 

kP 

in terms of pressure P we get, Langmuir Adsorption Equation in alternate form. 

Thus, if we plot a graph between P/V vs P, we will obtain a straight line with 
Slope = 1/Vmono and intercept =1/ KVmono. 

Limitations of Langmuir Adsorption Equation 
 

(i) The adsorbed gas has to behave ideally in the vapour phase. Langmuir equation is 
valid under low pressure only. 

(ii) Langmuir Equation assumes that adsorption is monolayer. But, monolayer formation 
is possible only under low pressure condition. Under high pressure condition the 
assumption breaks down as gas molecules attract more and more molecules towards 
each other. 

(iii) Another assumption is the surface of solid is homogeneous but in real solid surfaces is 
heterogeneous. 

=
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4. H2 (adsorbed) → 2 H (adsorbed) 

5. N (adsorbed) + 3 H (adsorbed) → NH3 (adsorbed) 

6. NH3 (adsorbed) → NH3 (g) 

6. KINETICS OF SURFACE REACTION 

The kinetics of heterogeneously-catalyzed reactions might vary with the partial pressures 
of the reactant gases above the catalyst surface which can be predicted by using the Langmuir 
isotherm. 

 
6.1 KINETICS OF UNIMOLECULAR DECOMPOSITION 

Examples of unimolecular decomposition 

1. Decomposition of NH3 to N2 and H2 on metal surfaces, 

2. Decomposition of Phosphine on glass, 
 

3. Decomposition of Formic acid on glass, Pt, Ag, Au, or TiO2. 

Consider the surface decomposition of a molecule A , i.e. the process 

A(g)  ⎯⎯→ A (adsorbed)  ⎯⎯→ Pr oduct 
 

Assumption 
 

1. The decomposition reaction occurs uniformly across the surface sites. Molecule ‘A’ may be 

adsorbed and is not restricted to a limited number of specific sites. 

2. The products are very weakly bound to the surface and, they can be easily deformed. 
 

3. The rate determining step is the surface decomposition step. 

According to Langmuir adsorption isotherm molecule ‘A’ adsorbed on the surface is in 
equilibrium with the gas phase and the surface concentration is represented as: 

θ =  b ⋅ P 
(1+ b ⋅ P) 
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k

The rate of the surface decomposition is given by an expression : 

Rate = k θ 

Substituting, θ , in the rate expression we get: 
 
 

Rate = 
k b P 

(1+ b P) 
 

The reaction is expressed within two limits: 
 

a. Low pressure limit: b ⋅ P <<1(First order reaction with a first order constant k ′= k ⋅b ) 
 
 

Rate = k ′⋅ P 
(1+ bP) 

 

Rate = K′⋅ P + K′ 
b 

 
K′ 

So Rate  � k ⋅b ⋅ P as b is constant. 
 

Under low pressure ‘è’ is very small and rate is directly proportional to pressure 
 

b. High pressure limit: b ⋅ P >>1 (Zero order reaction) 
 
 

Rate 
 
 

Rate 

= k ⋅b ⋅ P 
(1+ bP) 

 

= 
(1+ bP) 

 

Therefore  
 

(1 + b ⋅ P) ~ b⋅ P and Rate ~ k 
 

Under high pressure θ is almost unity. 
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Rate ~ k 
(zero order)

Rate 

Rate ~ kbP 
(first order)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.13 : Graphical representation of unimolecular surface decomposition 
 

6.2 KINETICS OF BIMOLECULAR REACTION (Langmuir-Hinshelwood) 

Between molecular adsorbates. 

Consider the reaction: 

 
 
 
 

Assumption: 

A(g ) ←⎯→ A(ads) 

B( g ) ←⎯→ B(ads) 
 

A(ads) + B(ads) ⎯r⎯ds→ AB(ads)  ⎯f⎯ast⎯→ AB(g) 

The surface reaction between the two adsorbed species is the rate determining step. The 
rate of the reaction of the two adsorbed molecules for biomolecular surface will be given by: 

Rate = k θA θB 

According to Langmuir adsorption isotherm: 

θ =  b⋅ P 
(1+ b ⋅ P) 

where two molecules (A & B) are competing for the same adsorption sites then 

θA = 
bA PA 

1+ bA PA + bB PB 

 
and θB = 

bBPB 

1+ bA PA + bB PB 

Substituting these into the rate expression gives: 
 

Rate = k θ   θ = k bA PA ⋅bB PB 
  A    B (1+ b P + b P )2

 
A   A B   B 



2.20 Chemistry 
 

(b P ) 

Condition 
 

1. Reactant Aand B in first order then 
 

bA PA <<1 and bB PB <<1 

θA & θB are very low. 

Hence, Rate → k bA PA bB PB = k ′PA PB 
 

2. First order in A, but negative first order in B then 
 

bA PA <<1<< bB PB 
 

 
θA → 0, θB →1 so  Rate = 

k bA PA
 

B   B 
= k ′PA 

PB 
 

7. TYPES OF ADSORPTION ISOTHERM 

Adsorption process is usually studied through graphs known as adsorption isotherm. 
After saturation pressure Ps, adsorption does not occur anymore, as there are limited numbers of 
vacancies on the surface of the adsorbent. At high pressure when all the sites are occupied and 
further increase in pressure does not cause any difference in adsorption process. At high pressure, 
adsorption is independent of pressure. There are 5 different types of adsorption isotherms and 
each of them has specific characteristics. 

 

Figure 2.14 : Illustration of different types of Adsorption Isotherm 

Monolayer

I 

III II

Multilayer

IV
V

Condensation in 
pores/capillaries
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2

Type I Adsorption isotherm is for very small pores or microporous adsorbents. 
Adsorption occurs by filling of micropores and it mainly depicts Monolayer adsorption. 

Eg. Adsorption of Nitrogen or Hydrogen on charcoal around −1800°C. 

Figure 2.15 : Type I 

Type IIAdsorption isotherm shows large deviation from Langmuir modelof adsorption. 
They are most frequently encountered when adsorption occurs on nonporous powders or 
macroporous adsorbents with unrestricted monolayer -multilayer adsorption. 

The intermediate flat region in the isoth2H K2  (Cg )Ol  3+ H⎯ 2⎯Mn e(gO(o2  )⎯→⎯S)    2⎯→ 2KC Hl  (+3  3Og )                       rm corresponds to monolayer formation. When 
3r37 oo0m Cte mp. 2 

H 2 + O 2 ⎯ ⎯  ⎯ ⎯ → N o r ea ct io n 
2 H 2 + O ⎯2     ⎯Ptb ⎯lac →k     2  H2 O 

R C O O R ′+ H O2  ⎯⎯ → R C OO H + R O′ H 
( C H6  10  O  5) n  + Hn 2  O   ⎯ ⎯→  n C1  H2  2  O2  11 

2 C    H O       + Hn     O    ⎯ ⎯→    n C H    O 
( 6   10  5 )n     2               12  2  2  11 

n C  H12 2  O2 11 + n H O2     ⎯ ⎯ →  n C  H12 2 O2 11  
V   = V  m a [S x ]  [ E  S ]   = K    [ E  ]   [ x S]  
0      K  +m  [    S]                     1  (K  2  + K  )3  

[ E t ] [x S]           { [E ] [x S] } 
[ ES ] = ( K 2+ K 3 )/ K [1 E S] =   ([ S] + K m 

X [S  ]  
( V )= V m a  x [ S  ]+ K  

mV ax [S  ] 1  
( V )= [ S] + [S ]= 2 V m ax  

1             K                 [  S] 
R a te (v )= V   m [S ]+ V   [  S ] 

m   ax                  m ax  
[ ES ] = [{ Et ]x [S ] /([  S ]+ K m } 

[{ E t][ S ]} 
[   ES ]   =      K 

1+ [S ]  /K  m  
K m  = ( K  2  + K  )3  

K 1  
[ ES ] = [E ] [S ]/ K m 

+ C 2  H  C5  l  ⎯ ⎯A Cl  ⎯→l3    C H6  C5  2  H  +5  H C l 
R C O O  R + H O  ⎯  ⎯H+  ⎯or  ⎯OH  →−    R CO  O H  + R O′  H  

est  er  2 
2 K M n O  + 4 5 H  C 2 O2  4  + 3 H 2 S O 4 ⎯  ⎯→  2  Mc a  S n t a ly  Os t  4  +  K  S 2 O  4+ 8  H  O2  +  1  0  C O 2  

lA2     3O 

 
C 2  H5 O H  ⎯    ⎯ ⎯ →   C H 2 et  =hen  CΗe  2  +  ΗO2  

S O  2  + O  2  ⎯ ⎯P t  →  2  S   O 3  

 

A    OFes2     3 
N 2  + 3 H 2  ⎯ ⎯2HS →  2N H 3 

 

/   ///  / 
2 H 2 + O  2 ⎯ ⎯ tP  →  2  H  O2  CO the monolayer formation of the adsorbed molec

CC 2  HH5  O  OH  ⎯ + H⎯ →⎯ C H⎯H+  C→3eth  HCano  OHl  + HO 2

u
+ C H  O                                      

les are complete, multilayer formation starts to 
 
 

c1a2 ne sug22 ar1 1         2               6g 1luco 2se 6      6  fruc 12tos 6e 
 

C H C3  O O  C H2  5  ⎯  ⎯+H → C H C3  O O  H +   C2  H  O5  H  
et   hyl   ace tat e              or   OH −           ac eti c ac i   d               etha  nol 

2 N a  S2  O 3+ O 2 ⎯  ⎯A  lcoh  ⎯→ol  2  N  a  S2  O 4  
4 N O + 4 N H    + Ο    ⎯ ⎯→   4 N + 6 H O 

3                2                                    2                 2 
2 N O  2  4+  N  H  3  + Ο 2  ⎯  ⎯→    3  N +2  6  H O 2  

+ 
N H  2  N O 2   ⎯⎯H →   N  O2  + H O2  

N H  2  N O 2 +  O  H  − ⎯ ⎯→   H O2  +   N  H N O  2−  
C Int  o em rm pl e edi     x at e  

N H  N O 2− ⎯  ⎯→   N  2 O  + O  H  −  
Fe 

�Mo   2 N H  3 
2 A s H3   ⎯ ⎯→    2 As   + 3H 2 

ca   t aly st  
 
 
 
 
 
 
 
 
 
 

take place corresponding to the ‘sharp knee’ of the isotherms. 

Eg: Iron (Fe) catalyst and Nitrogen (N (g)) adsorbed at −1950°C on silica gel.f 
 

Figure 2.16 : Type II 

Type III Adsorption Isotherm also shows large deviation from Langmuir model. This 
isotherm explains the formation of multilayer. They are characterized principally by heats of 
adsorption which are less than the adsorbate heat of liquefaction. 

X 
m 

Ps

P

X 
m 

P
Ps
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Eg: Bromine (Br2) at 790°C on silica gel or Iodine (I2) at 790°C on silica gel. 
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Figure 2.17 : Type III 

Type IV Adsorption Isotherm occur on porous adsorbents possessing pores in the 
range of approximately 15-1000 angstroms (A). At lower pressure region of graph is quite 
similar to Type II. This explains formation of monolayer followed by multilayer. 

The intermediate flat region in the isotherm corresponds to monolayer formation. 

The saturation level reaches at a pressure below the saturation vapor pressure. This can 
be explained on the basis of a possibility of gases getting condensed in the tiny capillary pores of 
adsorbent at pressure below the saturation pressure (PS) of the gas. 

Eg. Adsorption of Benzene on Iron Oxide (Fe2O3) at 500°C and adsorption of Benzene on silica 
gel at 500°C. 

Figure 2.18 : Type IV 

Type V Adsorption Isotherm results from small adsorbate-adsorbent interaction 
potentials similar to the Type III isotherms. However, Type V isotherms are also associated with 
pores in the same range as those of the Type IV isotherms. 

Eg: Adsorption of Water (vapors) at 1000°C on charcoal. 
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m 

P Ps

X 
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Figure 2.21 : Adsorption of poisonous gases using activated charcoal 

(iii) In desiccation or dehumidification 

Certain substances can be used to remove water vapour or moisture present in the air. 
Silica gel and alumina are used for dehumidification in electronic equipment. 

(iv) In clarification of sugar 

Sugar is decolorized bytreating sugar solution with animalcharcoalpowder which removes 
the colour producing substances. 

(v) In paint industry 

The paint should not contain dissolved gases as it inhibits the adherence capacity of paint 
to the surface to be coated. The dissolved gases are therefore, removed by suitable adsorbents. 
This is done by adding suitable liquids which adsorbs these films. Such liquids are called wetting 
agents. Eg. Use of spirit as wetting agent in furniture painting.. 

(vi) Adsorption chromatography 

Analytical method, in which molecules are separated according to their 
adsorptive properties, where a mobile fluid phase is passed over an immobile solid adsorptive 
stationary phase. 

(vii) In adsorption indicators 

Various dyes which possess adsorption property have been introduced as indicators 
mainly in precipitation titrations. For example KBr is titrated with AgNO3 using eosin as an 
indicator 

gas molecules

Activated Charcoal
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(viii) Heterogeneous Catalysis 

In heterogeneous catalytic reactions adsorption of gaseous reactants on solid catalyst 
occurs. The adsorption mechanism is responsible for the greater efficiency of the catalyst in the 
finely divided state and helps us to understand the action of catalyst promoters and poisons. eg, 

1. Finely powdered nickel is used for the hydrogenation of oils. 
 

2. In manufacture of sulphuric acid finely divided vanadium pentaoxide (V2O5) is used in the 

contact process. 
 
 
 
 

(i) diffusion of reactants to surface; 
(ii) adsorption of reactants to surface; 
(iii) reaction on the surface; 
(iv) desorption of products from surface; 
(v) diffusion of products away from the 

surface. 
 
 
 
 
 

Figure 2.22 : Process of Heterogeneous Catalysis 

(ix) In adsorption indicators 

In many precipitation titrations many dyes are used as indicators which work on the 
principle of adsorption. 

(x) In curing diseases 

Some pharmaceutical drugs have the capacity to adsorb the germs on them and kill them 
and protect us from diseases. 

(xi) Lake test for aluminium 

It is based on adsorption of litmus paper byAl(OH)3 precipitate 

diffusion 

adsorption 

reaction 

diffusion



Surface Chemistry and Catalysis 2.27 
 

(xii) Separation of inert gases 

Due to the difference in degree of adsorption of gases by charcoal, a mixture of inert 
gases can be separated by adsorption on coconut charcoal at different low temperatures. 

(xiii) In softening of hard water 

The use of ion exchangers for softening of hard water is based upon the principle of 
adsorption chromatography. The ion exchange resins helps to remove hardness causing ions 
from water and make it useful for industrial and domestic applications. 

(xiv) Arsenic Poisoning 

Colloidal ferric hydroxide is administered which adsorbs arsenic and removes it from 
body by vomiting 

(xv) Formation of stable emulsions in cosmetics and syrups etc. 

(xvi) Froth floatation method 

Used for concentration of sulphide ores is based on adsorption. 

(xvii) In cleaning action of soaps and detergents 
 
 

Figure 2.23 : Cleaning actions of soaps and detergents 
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lowers the interfacial 
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Mechanical 
agitation 
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Mechanical 
agitation 

Fat or Oil 
Globule

Fat or Oil 
Globule 

fabric substrate 
 
Clean Fabric + adsorbed surfactant 
prevents re-adsorption of fat globule

fabric substrate 
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(xviii) Application of adsorbents on pollution abatement 

o Many pollutants, both natural and synthetic, are gaseous in nature and it need to be 
effectively removed from the exhaust. 

o Gaseous industrial pollutants include HCl, H2SO4, H2S, SOx, NOx, NH3, Ethylene, 
Benzene, Ethanol, and HAP’s. Adsorption is a mass transfer process in which a porous 
solid comes in contact with a liquid or gaseous stream to selectively remove pollutants 
or contaminates by adsorbing them onto the solid. 

o The most common adsorbents used in industry are activated carbon, silica gel, activated 
alumina (alumina oxide), and zeolite. Activated carbon is the most common non-polar 
adsorbent. Polar adsorbents have a great attraction to absorb moisture. 

o Most industrial exhaust streams contain moisture the use of polar adsorbents is 
significantly limited for air pollution control systems. There are two main types of 
adsorption systems; fixed bed or continuous. 

[1] Fixed Bed or Packed Bed Systems 
 

These are quite simple devices. The fixed bed or packed bed reactors are most commonly 
used for study of solid catalyst. Afixed bed reactor usually consists of a cylindrical vessel packed 
with the adsorbent material (eg. activated carbon) and it contains more surface area for adsorption. 
The contaminated or the polluted air enters the fixed bed system at the side, where there is an 
exhaust distributor. The exhausted air exits the fixed bed adsorber clean of pollutants or 
contaminates. Once the adsorbent is fully saturated with adsorbate the system requires change- 
out of the spent materials, which is then packed with new adsorbent material. The spent adsorbent 
will be thermally cleaned. 

Advantages 
 

1. Ideal plug flow behavior 
 

2. Lower maintenance cost 

Disadvantage 
 

1. Plugging of bed due to coke deposition which results in high pressure drop. 
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2

 

RCOOR + H O ⎯ H⎯
+  o⎯r  OH⎯

− 

→ RCOOH + R′OH 
ester 2 

 
the rate of reaction is proportional to the concentration of the catalyst (H+ or OH– ) 

 
(iii) A catalyst is more effective when finely divided In heterogeneous catalysis, the solid 

catalyst is more effective when in a state of fine subdivision than it is used in bulk. Thus 
a lump of platinum will have much less catalytic activity than colloidal or platinised 
asbestos. Finely divided nickel is a better catalyst than lumps of solid nickel. 

(iv) A catalyst is specific in its action While a particular catalyst works for one reaction, it 
will not necessarily work for another reaction. Different catalysts, moreover, can bring 
about completely different reactions for the same substance. For example, ethanol 
(C2H5OH) gives ethene (C2H4) when passed over hot aluminium oxide, 

 

C H OH  ⎯A⎯l2O⎯3 →  CH  = CΗ  + Η O 
2     5 2 2 2 

ethene 
 

but with hot copper it gives ethanal (CH3CHO) 

(Dehydration) 

C H OH  ⎯⎯Cu →  CH CHO + H 
2     5 3 2 

ethanol 
(Dehydrogenation) 

(v) A catalyst cannot, in general, initiate a reaction In most cases a catalyst speeds up a 
reaction already in progress and does not initiate (or start) the reaction. But there are 
certain reactions where the reactants do not combine for very long period (perhaps 
years). For example, a mixture of hydrogen and oxygen, which remains unchanged 
almost indefinitely at room temperature, can be brought to reaction by the catalyst 

platinum black in a few seconds. 
 

H2 + O2 ⎯ r⎯oom⎯tem⎯p.→ No reaction 

2H2 + O  ⎯P⎯t bla⎯ck → 2H2O 
 

Thus it is now considered that the catalyst can initiate a reaction. According to this 
view, the reacting molecules (in the absence of catalyst) do not possess minimum 
kinetic energies for successful collisions. The molecules rebound from collision without 
reacting at all 

(vi) A catalyst should remain unchanged in mass and chemical composition during end of 
the reaction. 
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(vii) Catalyst can alter only the speed of the reaction but it should not affect the equilibrium 
of the reaction. 

(viii) Catalysts are more active at its optimum temperature. Change of temperature alters 
the rate of a catalytic reaction as it would do for the same reaction without a catalyst. 

(ix) The catalytic activity can be altered by adding a small amount of foreign substance. 
Such substances which catalyse the catalyst are called as promoters and the substance 
which inhibits the reaction are called as catalytic poisons or anti-catalyst. 

 
4. TYPES OF CATALYSIS 

Catalytic reactions can be broadly divided into the following types, 
 

 HOMOGENEOUS CATALYSIS 

When the reactants and the catalyst are in the same phase (i.e. solid, liquid or gas) it is 
said to be homogeneous. 

Examples of Homogenous Catalysis 

1. The depletion of ozone (O3) in the ozone layer of the Earth’s atmosphere by chlorine free 
radicals (Cl�) is a an example where the reactant and product exist in gaseous phase. Slow 
breakdown of manmade chlorofluorohydrocarbons (CFCs), release chlorine free radical 
into the atmosphere, which converts gaseous ozone to gaseous oxygen (O2). 

2. Fischer esterification: Reaction of carboxylic acid with an alcohol involves the use of 
sulfuric acid as the catalyst and is an example where everything is contained in a liquid phase. 

 HETEROGENEOUS CATALYSIS 

The catalytic process in which the reactants and the catalyst are in different phases is 
known as heterogeneous catalysis. 

Examples of Heterogeneous Catalysis 
 

1. The catalytic converters in automobiles convert exhaust gases such as carbon monoxide (CO) 
and nitrogen oxides (NOx) into more harmless gases like carbon  dioxide (CO2) and 
nitrogen (N2). Metals (solids) like platinum (Pt), palladium (Pd) and rhodium (Rh) are 
used as the catalyst. 
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2. Manufacturing of sulfuric acid (H2SO4) involve solid vanadium pentoxide (V2O5) as the 

catalyst to convert gaseous sulfur dioxide (SO2) into gaseous sulfur trioxide (SO3). 

3. Catalytic hydrogenation of liquid Unsaturated hydrocarbons (alkenes) reacts with 

gaseous hydrogen (H2) to produce liquid saturated hydrocarbons (alkanes) where metals 

like platinum (Pt) and palladium (Pd) as the catalyst.. 

4. Haber Process  
 

H2 ( g ) + 3H2 ( g) ⎯⎯→ 2H3 (g) 
 

The catalyst is porous iron prepared by reducing magnetite, Fe3O4, with potassium hydroxide 

(KOH) added as a promoter. 
 
 

Positive Catalysis: When the rate of the reaction is accelerated by the foreign substance, it is 
said to be a positive catalyst and phenomenon as positive catalysis. Examples of positive 
catalysis are given below. 

(i) Decomposition of KClO3 
 

2 KClO3 

MnO2 (S) 

⎯3⎯70o ⎯C → 2 KCl + 3O2 

 
 

Negative Catalysis: There are certain, substance which, when added to the reaction mixture, 
ret ard the reaction rat e instead of increasing it. These are called negative 
catalyst or inhibitors and the phenomenon is known as negative catalysis. 

Some examples are as follows. 

(i) Oxidation of sodium sulphite 
 

2 Na2SO3  + O2  ⎯
A⎯lcoh⎯ol→ 2 Na2SO4 

(ii) Tetra Ethyl Lead (TEL) is added to petrol to retard the ignition of petrol vapours on 

compression in an internal combustion engine and thus minimize the knocking effect. 
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5. AUTOCATALYSIS 

When one of the products of reaction itself acts as a catalyst for that reaction 
the phenomenon is called Autocatalysis. 

In autocatalysis the initial rate of the reaction rises as the catalytic product is formed, 
instead of decreasing steadily (Figure). The curve plotted between reaction rate and time shows 
a maximum when the reaction is complete 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.3 : Rate of autocatalytic reaction 
 

A chemical reaction is said to have undergone autocatalysis, or be autocatalytic, if the 
reaction product is itself the catalyst for that reaction. 

Examples of Autocatalysis 
 

(1) Hydrolysis of an Ester. The hydrolysis of ethyl acetate forms acetic acid (CH3COOH) 
and ethanol. Of these products, acetic acid acts as a catalyst for the reaction. 

 

CH3COOC2 H5   + H2O  ⎯⎯→ CH3COOΗ + C2 H5OH 
catalyst 

 

(2) Oxidation of Oxalic acid. Whenoxalic acid is oxidised by acidified potassium permanganate, 
manganous sulphate produced during the reaction acts as a catalyst for the reaction. 

2 KMnO4 + 5H2C2O4 + 3H2SO4 ⎯⎯→ 2 MnSO4 
catalyst 

+ K2SO4 + 8 H2O +10 CO2 

(3) Decomposition of Arsine. The free arsenic produced by the decomposition of arsine (AsH3) 

autocatalyses the reaction. 

2 AsH3 ⎯⎯→ 2 As 
catalyst 

+ 3H2 

Completion of reaction

Sigmoid Curve

Time

P e
rc

en
ta

ge
 re
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tio

n 
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6. CATALYTIC POISONING AND PROMOTERS 

 Promoters 

The activity of a catalyst can often be increased by addition of a small quantity of a 
second material. This second substance is either not a catalyst itself for the reaction or it may be 
a feeble catalyst. 

A substance which, though itself not a catalyst, promotes the activity of a catalyst 
is called a promoter. They are substances when added in small concentration can increase the 
activity of a catalyst. 

 
Example of Promoters 

Molybdenum (Mo) or aluminium oxide (Al2O3) promotes the activity of iron catalyst in 
the Haber synthesis for the manufacture of ammonia. 

 

N2 + 
Fe 

3H2 � 
Mo 

2NH3 

 

In some reactions, mixtures ofcatalysts are used to obtain the maximum catalytic efficiency. 
For example, in the synthesis of methanol (CH3OH) from carbon monoxide and hydrogen, a 
mixture of zinc and chromium oxide is used as a catalyst. 

 

CO + 2H ⎯ Z⎯nO⎯→ CH OH 

 
Explanation of Promotion Action 

2 Cr2O3
 3 

The theory of promotion of a catalyst is not clearly understood. Presumably: 

(1) Change of Lattice Spacing. The lattice spacing of the catalyst is changed thus enhancing 
the spaces between the catalyst particles. The absorbed molecules of the reactant (say H2) 
are further weakened and cleaved. This makes are reaction go faster. 

 
 

(2) Increase of Peaks and Cracks. The presence of the promoter increases the peaks and 
cracks on the catalyst surface. This increases the concentration of the reactant molecules 
and hence the rate of reaction. 

The phenomenon of promotion is a common feature of heterogeneous catalysis. 
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Distance between 
catalyst particles 

 

Covalent bond 
much weakened 

and cleaves readily 
 
 
 
 
 
 
 
 
 
 

Figure 3.4 : How the change of crystal lattice spacing of catalyst makes the reaction go faster. 
 
 
 

 CATALYTIC POISONS 

Small amounts ofsubstances can reduce the activity of catalyst. If the reduction in activity 
is reversible, the substances are called inhibitors. Inhibitors are sometimes used to increase the 
selectivity of a catalyst by retarding undesirable reactions. 

A substance which destroys the activity of the catalyst to accelerate a reaction is 
called a poison and the process is called Catalytic Poisoning. 

 
 

Examples of Catalytic Poisoning 
 

(1) The platinum catalyst used in the oxidation of sulphur dioxide (Contact Process), is poisoned 

by arsenic oxide (As2O3) 

SO2 + O2 ⎯ P⎯t 

→ 
As2O3 

2SO3 

 

(2) The iron catalyst used in the synthesis of ammonia (Haber Process) is poisoned by H2S. 
 

N2 + 3H2 ⎯ F⎯e

→ 
H2S 

2NH3 

 

(3) The platinum catalyst used in the oxidation of hydrogen is poisoned by carbon monoxide 
 

2H  + O ⎯P⎯t → 2H O 
2 2 CO 2 
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C C C

 

Types of Catalytic Poison 
 

(i) Temporary Poisoning 

Catalyst regains its activity when the poison is removed from the reaction 

(ii) Permanent Poisoning 
 

a. Catalyst cannot regain its activity even if the catalytic poison is removed. 
 

b. Eg.AS2O3 poisons catalyst Pt permanently in manufacturing of SO3. 

Explanation of Catalytic Poisoning 
 

(1) The poison is adsorbed on the catalyst surface in preference to the reactants. Even a 
monomolecular layer renders the surface unavailable for further adsorption of the 
reactants. The poisoning byAs2O3 or CO appears to be of this kind. 

O O O 
 
 
 
 
 
 
 
 

Figure 3.5 : Poisoning of platinum catalyst by carbon monoxide 
 

(2) The catalyst may combine chemically with the impurity. The poisoning of iron catalyst 

by H2S falls in this class 

Fe +  H2S  ⎯⎯→ FeS + H2 

 

7. ACID AND BASE CATALYSIS 

A number of homogeneous catalytic reactions are known which are catalysed by 
acids or bases, or both acids and bases. These are often referred to asAcid-Base catalysts. 
Arrhenius pointed out that acid catalysis was, in fact, brought about by H+ ions supplied by 
strong acids, while base catalysis was caused by OH– ions supplied by strong bases. 
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Eg. Lead is a very good example for catalytic poisoning. It gets adsorbed to the honey comb of 
expensive metals and inhibits the function of catalyst. Catalytic converter has also forced the 
removal of lead from petrol. 

 
 
 
 
 

Process 
Exhaust 

Catalyst 

N2 

O2 

NOx H2O 
O2 

 
 
 
 

Exhaust to 
Atmosphere 

 
 

NH3 

4 NO + 4 NH3 + Ο2 

2 NO2 + 4 NH3 + Ο2 

 
⎯⎯→ 

⎯⎯→ 

 
4 N2 + 6H2O 
3 N2 + 6H2O 

 
Figure 3.6 : Basic Catalytic Converter 

 
2. Petroleum Refining 

 
(i) Fluid catalytic cracking: Breaking large hydrocarbon into smaller hydrocarbons. 

(ii) Catalytic reforming: Reforming crude oil to produce high quality gasoline component 

(iii) Hydrodesulfurization: Removing sulfur compounds from refinery intermediate 
products 

(iv) Hydrocracking: Breaking large hydrocarbon molecules into smaller ones 

(v) Alkylation: Converting isobutane and butylenes into a high-quality gasoline 
component 

(vi) Isomerization: Converting pentane into a high-quality gasoline component 
 

3. Chemicals and petrochemicals 
 

(i) Haber process for ammonia production 

(ii) Styrene and Butadiene synthesis for use in producing synthetic rubber 

(iii) Contact process for production of sulfuric acid 

(iv) Ostwald process for production of nitric acid 
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n

(v) Methanol synthesis 

(vi) Production of different plastics and synthetic fabrics 
 

4. Other 
 

(i) Fischer-Tropsch and Coal gasification processes for producing synthetic fuel gases 
and liquid fuels 

(ii) Various processes for producing many different medicine 
 

9. BIOLOGICAL CATALYST——ENZYMES 

Numerous organic reactions are taking place in the body of animals and plants to maintain 
the life process. These reactions being slow remarkably catalysed by the organic compounds 
known as Enzymes. All enzymes have been found to be complex protein molecules. Thus: 
Enzymes are protein molecules which act as catalysts to speed up organic reactions in living cells. 
The catalysis brought about by enzymes is known as Enzyme Catalysis. 

Each enzyme is produced in a particular living cell to catalyse a reaction occurring in that 
cell. Many enzymes have been identified and obtained in pure crystalline state from the cells to 
which they belong. However the first enzyme as prepared by synthesis in the laboratory in 1969. 

Enzymes are substances found in biological systems that act as catalyst for specific 
biochemical process. Enzymes are usually protein or steroid which is synthesized in the living 
cells of animals and plants. Enzymes catalyze reactions inside organism. Enzymes possess a 
incredible capacity to carry out complex chemical reactions like hydrolysis, oxidation, reduction 
etc. 

Eg.(i) Amylase is an enzyme which breaks down starch into glucose. 

(C6H10O5 ) + nH2O ⎯⎯→ nC12H22O11 
 

(ii) Diastase converts starch to maltose and maltase converts maltose to glucose 
 

2(C6 H10O5 ) + nH2O ⎯⎯→ nC12 H22O11 

nC12H22O11 + nH2O ⎯⎯→ nC12 H22O11 

n
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T

The total amount of enzyme equals the free and that bound to substrate 
 

[ET] = [E] + [ES] 

[E] = [E ] − [ES] 

Substitute the value of E 

 
 
 
 
 

Then 

[ES] = 

 
{[Et][S]} 

[ES] =  K  
1+[S] / Km 

{[E] x[S]} 
([S] + Km 

 

This simplifies to: 

[ES] = {[Et] x[S] / ([S]+ Km } 

Multiplying both sides by the kinetic constant k3 gives the velocity of the reaction 

V = k3 × [ES] = k3×[ET] ×(([S] ([S] + KM ) 

and substituting Vmax for k3×[ET] leads to the familiar form of the Michaelis Menten Equation: 

The above equation is called Michaelis –Menton equation. This equation is applicable 
to enzyme catalysed reaction having a single substrate. Aquantitative estimation of initial rate of 
reaction, maximum velocity and substrate concentration is combined through a constant called 
Michaelis constant. 

Case 1: First order reaction-When concentration of substrate is low. 
 

If Km >> S then s is neglected and then the equation becomes 

Rate (v) = Vmax ×[S] | (KM) 

Case 2: Zero order reaction-When concentration of substrate is high. 

V = V X[S]
max [S] + K
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0.15 

0.10 

0.05 

 

If Km << S then Km is neglected and equation becomes 

Rate (v) = Vmax ×[S] | [S] so Vmax = Constant 

Case 3: If Km = [S] then 
 

Rate (V) = Vmax [S] = 1 V 
   

[S] + [S] 2 

Reciprocating the above equation 

max 

 

1 = Km + [S] 
Rate (v) Vmax [S] Vmax [S] 

Rearranging the above equation: 
 

1 = Km + [S] 
Rate (v) Vmax [S] Vmax [S] 

 

The above equation is similar to an equation of straight line y = mx + c. Agraph is plotted 

between 1/rate and 1/[S] we get a straight line. 
 
 
 
 
 
 
 
 
 
 
 
 
 

−0.1 0.0 0.1 0.2 0.3 
1/[s] 

Figure 3.8 
 

where slope = Km /Vmax and Intercept =1/Vmax 

1/
V
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 FACTORS AFFECTING ENZYME ACTIVITY 
a. Enzyme Concentration 

z If we keep the concentration of the substrate constant and increase the concentration 
of the enzyme, the rate of reaction increases linearly. (That is if the concentration of 
enzyme is doubled, the rate doubles.) 

z This is because in practically allenzyme reactions the molar concentration of the enzyme 
is almost always lower than that of the substrate. 

b. Substrate Concentration 

z If we keep the concentration of the enzyme constant and increase the concentration 
of the substrate, initially, the rate increases with substrate concentration, but at a certain 
concentration, the rate levels out and remains constant. 

z So at some point, increasing the substrate concentration does not increase the rate of 
reaction, because the excess substrate cannot find any active sites to attach to. 

c. Temperature 

z For enzyme-catalyzed reactions, like all chemical reactions, rate increases with 
temperature. However, enzymes are proteins, and at higher temperatures proteins 
become denatured and inactive. Thus, every enzyme has an optimum temperature. 

z Optimum temperature - the temperature at which enzyme activity is highest-usually 
about 25oC−40oC. 

d. Effect of pH 

z Small changes in pH can result in enzyme denaturation and loss of catalytic activity. 

z Because the charge on acidic and basic amino acid residues located at the active site 
depends on pH. Most enzymes only exhibit maximum activity over a very narrow pH 
range. 

z Most enzymes have an optimum pH that falls within the physiological range of 7.0- 
7.5. 

z Notable exceptions are the digestive enzymes pepsin and trysin. 

z pepsin (active in the stomach) - optimum pH of 1.5 

z trypsin (active in the small intestine) - optimum pH of 8.0 
 

� � � 


